הוכחה

במתמטיקה ובלוגיקה הוכחה היא סדרה סופית של טענות הנובעות זו מזו בעזרת כללי היסק, תוך שימוש בהגדרות, באקסיומות, ובידע קודם שהוכח קודם לכן, המראה שטענה מסוימת היא נכונה.

הפרכה של טענה מהווה גם היא הוכחה - הוכחה שטענה זו אינה נכונה (כלומר ששלילתה של הטענה היא נכונה). טענה שטרם זכתה להוכחה קרויה השערה, וטענה שזכתה להוכחה קרויה משפט או תאורמה.

דוגמה להוכחה בגאומטריה אלגברית. סיום ההוכחה מסומן בהלמוש.

תפקידה המתמטי של ההוכחה הוא להפוך רעיונות והשערות לדרך סלולה, שממנה אפשר להתקדם לרעיונות חדשים. על ההצגה הנאותה של הוכחה מתמטית כתב הרמן וייל "איננו מרוצים כאשר אנו נדרשים לקבל אמת מתמטית מתוקף שרשרת מסובכת של הסקות פורמליות וחישובים, שדרכם אנו מגששים דרכנו במגע. אנו רוצים לקבל סקירה של הדרך ומטרותיה; אנו רוצים להבין את הרעיון, את ההקשר העמוק".

מאפיינים של הוכחות

הוכחה משתמשת בכללים להסקת מסקנות, אך יש בה גם שימוש נרחב בשפה טבעית, ולכן עלולה להיות בה עמימות הנובעת מעמימותה של השפה. כדי להימנע מעמימות זו ניתן להשתמש בהוכחה פורמלית.

להוכחה משמשות טכניקות אחדות:

  • הוכחה ישירה, שבה המסקנה נובעת ישירות מההגדרות, מהאקסיומות וממשפטים קודמים. דוגמה להוכחה כזו היא ההוכחה שסכומם של שני מספרים זוגיים יהיה גם זוגי.
  • הוכחה באינדוקציה: תחילה בודקים את נכונות הטענה למקרה מסוים, ומכאן ממשיכים להוכחתה לקבוצה אינסופית של מקרים. דוגמה להוכחה כזו היא הוכחת הנוסחה למציאת סכום של סדרה חשבונית.
  • הוכחה בדרך השלילה: מניחים שהטענה שיש להוכיח אינה נכונה, ומראים שהנחה זו מובילה לסתירה. דוגמה להוכחה כזו היא הוכחתו של אוקלידס בדבר קיום מספר אינסופי של מספרים ראשוניים.
  • הוכחה בדרך טרנספוזיציה.
  • הוכחה על ידי בניה, היא הוכחה על ידי בניית דוגמה ספציפית, בדרך כלל זו תהיה הוכחת קיום, לדוגמה, כך הוכח קיומם של מספרים טרנסצנדנטיים.
  • הוכחה בכוח גס.
  • הוכחה על ידי מיצוי, היא שיטה שמפרקת את הטענה למקרים רבים (יותר מ-1000 במקרה של משפט ארבעת הצבעים), ומוכיחה כל אחד בנפרד, ועל ידי כך מוכחת הטענה כולה.

ניתן להבדיל בין שני סוגים של הוכחות:

  • הוכחת קיום: הוכחה שמראה את קיומו של עצם מסוים, בלי להראות כיצד ליצור עצם זה.
  • הוכחה קונסטרוקטיבית: הוכחה שמראה כיצד ליצור עצם בעל תכונה מסוימת.

משפט ארבעת הצבעים, שהוכח בשנת 1976, היה המשפט הראשון שלהוכחתו נדרשה הסתייעות מהותית במחשב. עובדה זו עוררה פולמוס בין המתמטיקאים סביב השאלה האם הוכחה כזו, שאדם אינו יכול לבדוק אותה בכוחות עצמו, יכולה להיחשב כהוכחה מתמטית תקפה.

פעמים רבות ניתן להוכיח טענה מסוימת בדרכים שונות, ולעתים אף דרכים רבות למדי. משפט פיתגורס נודע במאות הוכחות שניתנו לו. למשפט הקובע שהמספרים הרציונליים הם קבוצה בת מניה מופיעות בוויקיפדיה העברית שלוש הוכחות שונות, בערכים: קבוצה בת מנייה, מספר רציונלי ועוצמה.

נהוג לחתום הוכחות על ידי סימון מוסכם: בעברית: מש"ל (=מה שהיה להוכיח), באנגלית: .Q.E.D (מלטינית: quod erat demonstrandum, במובן שזהה מילולית אל זה של הביטוי העברי הנ"ל). לחלופין, נוהגים לעתים בימינו לסמן את סוף ההוכחה על ידי ציור של ריבוע ריק או מלא ( ) הנקרא הלמוש. חכמי התלמוד הבבלי, נהגו לחתום הוכחות בסימן ש"מ (מארמית: "שמע מינה"; מילולית: תשמע מזה [את מה שהיה להוכיח]).