פונקציה על

Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה מקבוצה A לקבוצה B היא על אם כל איבר בקבוצה B מתקבל כערך של הפונקציה. לדוגמה, הפונקציה המתאימה לכל עלה את העץ שעליו הוא צומח היא "על", אם על כל עץ צומח עלה אחד לפחות.

באופן פורמלי: פונקציה היא על Y, אם לכל איבר בטווח (Y) של הפונקציה מתאים לפחות איבר אחד בתחום (X) שלה (ובמילים אחרות: התמונה של שווה לטווח שלה). בסימון מתמטי: לכל קיים כך ש-. במקרה זה לעתים מסמנים: כדי לציין ש-f היא על.

קיומה של התכונה תלוי בטווח עליו מוגדרת הפונקציה: כך למשל, הפונקציה המתאימה לכל אדם את אמו היא על אם הטווח הוא קבוצת הנשים שיש להן ילדים, אבל לא על אם הטווח שלה מוגדר כקבוצת כל הנשים (כי יש נשים שאין להן ילדים). מסיבה זו, מקובל לציין שפונקציה היא על קבוצה מסוימת (שפירושו: אם קבוצה זו תילקח כטווח הפונקציה, יתקיימו הדרישות לפונקציה על).

דוגמאות ודוגמאות נגד

  • הפונקציה המתאימה לכל מצביע בבחירות 2006 את המפלגה שעבורה הצביע היא על קבוצת המפלגות שהתמודדו בבחירות אלה, כי לכל מפלגה הצביע לפחות אדם אחד (לא היו מפלגות שזכו לאפס קולות).
  • תהי הפונקציה המוגדרת לפי הנוסחה לכל x ממשי. פונקציה זו היא "על", משום שלכל , .
  • לעומת זאת, הפונקציה המוגדרת להיות אינה על, כיוון של , למשל, לא קיים מקור ממשי המקיים את המשוואה .
  • תהי (פונקציה מקבוצת הממשיים לקבוצת הממשיים האי שליליים) המוגדרת באותה צורה, אזי היא על, כיוון שלכל ממשי אי שלילי קיים המקור .