קריפטוגרפיה

Disambig RTL.svg המונח "צופן" מפנה לכאן. אם התכוונתם למשמעות אחרת, ראו צופן (פירושונים).

קריפטוגרפיה היא ענף במתמטיקה ומדעי מחשב העוסק במחקר ופיתוח שיטות אבטחת מידע ותקשורת נתונים על רבדיהם השונים, בסביבה פתוחה הנגישה לצד שלישי המכונה "אויב", "מתחרה" או "יריב" פוטנציאלי. התחום מאגד תחתיו פיתוח ואנליזה של פרוטוקולים המתמודדים בהיבטים שונים של אבטחת מידע בנוכחות צד שלישי. מהם בנוסף לסודיות, הרשאת גישה, סיסמה, הוכחת ידיעה, פרוטוקול אתגר-מענה, מנגנוני חתימה דיגיטלית, חלוקת סוד, חישוב רב משתתפים שומר סודיות, אימות זהויות, מניעת הכחשה ועוד.

מערכת הצפנה משתמשת באבני בניין קריפטולוגיות כצופן סימטרי, צופן זרם, מפתח פומבי, פונקציות גיבוב, קוד אימות מסרים, מחולל פסבדו אקראי וכדומה.

קריפטוגרפיה מודרנית משתלבת בתחומי מחקר אחרים כמו מתמטיקה, סטטיסטיקה והסתברות, תורת האינפורמציה, מדעי מחשב והנדסת אלקטרוניקה. יישומיה רבים ומגוונים וכוללים בין היתר, אבטחת רשתות תקשורת, תקשורת סלולרית, חומת אש, מסופי משיכה, כרטיסי אשראי, דואר אלקטרוני, מסחר אלקטרוני ועוד.

השם "קריפטוגרפיה" מקורו במילה היוונית "קריפטו" (κρυπτός) שמשמעותה נסתר או אמנות ההסתרה, ו"גרפיה" (γράφω) שמשמעותה "כתיבה". בתרגום חופשי נעשה שימוש בשם באופן חליפי למונח קריפטולוגיה שפירושו תורת ההסתרה (Crypto-logia, κρυπτός-λογία), אם כי משמעותו רחבה יותר מתחום ההצפנה בלבד.

מונחים כלליים

טקסונומיה של תורת ההצפנה

במובן הבסיסי, המונח הצפנה מתאר הסתרת משמעותו של מסר קריא באמצעות פונקציה שמקבלת כפרמטר מפתח הצפנה והופכת את המסר לרצף של סימנים המכונה צופן שאינו מובן לאיש. שחזור הטקסט המוצפן למצבו הקריא באמצעות פונקציה הופכית מתאימה עם מפתח הפענוח, קרוי פענוח. המונח צופן (Cipher) מתייחס לאלגוריתם הצפנה בדרך כלל במחשב, כאשר קלט האלגוריתם נקרא "טקסט קריא" או "טקסט גלוי" (באנגלית: Plaintext) ואילו פלט האלגוריתם נקרא "טקסט מוצפן" או "כתב סתר" (באנגלית: Ciphertext). פעולת אלגוריתם ההצפנה נשלטת על ידי מפתח ההצפנה הסודי הידוע רק לשולח ולמקבל. בשפה העברית משמשת המילה צופן גם כשם עצם לכתב סתר או קוד. שיטות הסתרת מידע שאינן עושות שימוש במפתח הצפנה קרויות סטגנוגרפיה.

בעבר המונח קריפטוגרפיה שימש כמעט באופן בלעדי לתיאור הצפנת מסרים. אולם בעידן המודרני התחום הלך והתרחב והוא משמש כיום לתיאור ענף מדעי רחב היקף העוסק בהיבטים השונים של אבטחת המידע, אלגוריתמים קריפטוגרפיים, פרוטוקולים ומנגנוני אבטחת מידע, פרוטקולי אימות זהויות, שיטות הבטחת שלמות ופסבדו-אקראיות. בניסוח פורמלי, משמשת המילה קריפטוגרפיה לתיאור שיטות יישום ההצפנה ואילו קריפטאנליזה מתמקדת בחקר השיטות לשבירתה. את תחום המחקר המאגד את שניהם מכנים קריפטולוגיה. בניסוח לא פורמלי, ניתן לעשות שימוש במילה קריפטוגרפיה כדי לתאר את הענף כולו.

במערכת תקשורת טיפוסית כמו רשת האינטרנט הקריפטוגרפיה משתלבת יחד עם רכיבי תקשורת נוספים כמו איפנון, תיקון שגיאות ודחיסה. התרשים משמאל מתאר באופן כללי את השלבים בהם עובר מידע הזורם בערוץ תקשורת מצד אחד לצד השני ואת מיקומה של הקריפטוגרפיה במערכת כזו, בדרך כלל בין שלב קידוד המידע (כגון דחיסה) לבין קידוד הערוץ (תיקון שגיאות). קריפטוגרפיה מודרנית מטפלת בשלושה נושאים עיקריים:

מיקומה של הקריפטוגרפיה במערכת תקשורת טיפוסית
  • סודיות
סודיות מושגת על ידי הצפנה שנעשית על ידי השולח באמצעות מפתח הצפנה סודי ובמסגרתה המסר הגלוי מועבר למצב מוצפן ופענוח שנעשה על ידי המקבל ובמסגרתו המסר המוצפן חוזר להיות גלוי. לעתים מפתח ההצפנה זהה למפתח הפענוח ולעתים שונה. בקריפטוגרפיה מודרנית בשני השלבים האמורים משתמשים השולח והמקבל בפרוטוקולים ובאלגוריתמים קריפטוגרפיים להשגת סודיות. כאשר השיטות עצמן אינן סודיות והן ידועות ומוסכמות מראש - רק מפתח ההצפנה סודי.
  • אימות (Authentication)
במערכת קריפטוגרפית שלמה, סודיות לבדה אינה מספקת. יש צורך בנוסף בפרוטוקול אימות זהויות שנועד למנוע התחזות וכן לספק דרך לדעת מיהו מקור המידע, בדומה לפונקציה שממלאת חתימה על גבי המחאה.
  • הבטחת שלמות (Integrity)
הבטחת שלמות נעשית בדרך כלל על ידי אלגוריתם אימות שתפקידו להבטיח שהמידע (שאינו בהכרח מוצפן) אותנטי, כלומר שלא נעשה בו שינוי זדוני כלשהו על ידי צד שלישי, אויב או מתחרה. כל שינוי אפילו קל מאוד יתגלה מיד על ידי המשתתפים הלגיטימיים, מה שיגרום למערכת להיפטר מהמידע הפגום ולשלוח הודעת שגיאה מתאימה.

בנוסף קיימים תהליכים נלווים כגון מחולל פסאודו-אקראי המשמש בין היתר להכנת מפתחות הצפנה, פונקציות גיבוב וכדומה ותהליכים נוספים שאינם בהכרח קריפטוגרפיים. השאיפה היא שתהליכים אלו יהיו שקופים מבחינת המשתמש, כאשר משתמש מתחבר לשרת או מבצע עסקה מקוונת, ההכנות הדרושות נעשות ברקע מבלי שיחוש בכך, מלבד הדרישה מעת לעת לספק פרטי זיהוי כלשהם כמו סיסמה, מספר כרטיס וכדומה.

רקע היסטורי

Postscript-viewer-shaded.png ערך מורחב – הצפנה קלאסית

הצפנה ככלי לקידוד והסתרת מידע הייתה קיימת משחר ההיסטוריה. עד לעשורים האחרונים מקובל להתייחס אליה כאל הצפנה קלאסית או הצפנת 'עט ונייר'. כלומר שיטות הצפנה לקסיקורגפיות הפועלות על סימנים כגון אותיות וספרות ומיושמות ידנית או באמצעים מכניים פרימיטיביים כמו גליל או מכונת כתיבה או בשיטות סטגנוגרפיות. התפתחותה של הקריפטוגרפיה הואצה בראשית המאה העשרים עם הופעת מנגנוני הצפנה מכניים ואלקטרו-מכניים מורכבים ומסובכים יותר ויותר, הנקראים מכונות הצפנה מבוססות רוטור, בראשן האניגמה. הקריפטוגרפיה המודרנית המוכרת לנו כיום החלה עם המצאת המחשבים, שיטות ההצפנה הפכו למתמטיות יותר ויותר באופיין ומורכבותן הפכה להיות מסובכת מדי לביצוע באופן ידני, עד שהפכה נחלתם הבלעדית של המחשבים.

במקביל התפתחה הקריפטואנליזה. מה שהחל כאמנות פיצוח קודים והמשיך עם גילוי הניתוח הסטטיסטי ככלי יעיל לשבירת צפנים. היכולת לקרוא תשדורות מוצפנות השפיע רבות על מהלך ההיסטוריה. אפשר לציין כדוגמה את מברק צימרמן שגרם להתערבותה של ארצות הברית במלחמת העולם הראשונה. או השפעת פיצוח הצפנים הנאציים בידי הבריטים, על מאזן הכוחות במלחמת העולם השנייה.

בעבר שימשה הקריפטוגרפיה הקלאסית בעיקר ממשלות, צבאות, דיפלומטים ומרגלים. שני אירועים לכאורה לא קשורים שאירעו ב-1970 בסמיכות רבה, הביאו למפנה העיקרי ותרמו יותר מכל להפיכתה למודרנית כפי שהיא מוכרת כיום; הפצת DES כתקן הצפנה והמצאת RSA. קריפטוגרפיה מודרנית התפתחה בשני מישורים מקבילים אילו: הצפנה סימטרית והצפנה א-סימטרית.

בעשורים האחרונים של המאה העשרים ההצפנה עברה מהפך משמעותי מסוג של מיומנות שהיא נחלתם של מעטים, שבעיקרה הייתה אוסף פעולות אד הוק שמסתמכות על התחכום של מפתח הצופן למדע מבוסס היטב שנשען על יסודות תאורטיים מוצקים. אפשר לחלק את הפרדיגמות המייחדות פיתוח צופן בקריפטוגרפיה המודרנית לעומת הקלאסית לשלושה צעדים עיקריים:

  1. הצעד הראשון בפתרון בעיה קריפטוגרפית הוא להגדיר היטב בצורה פורמלית את דרישות הביטחון של המערכת.
  2. הצעד השני, כאשר ביטחון המערכת נשען על השערה בלתי מוכחת, היא חייבת להיות מנוסחת היטב. יתרה מזו, ההשערה חייבת להיות מינימלית.
  3. הצעד השלישי, בניית מערכת ההצפנה צריכה להיות מלווה בהוכחות מוצקות ביחס להגדרות הביטחון הדרושות מהצעד הראשון ובהתאם להשערות המוצהרות (אם הן נדרשות) בצעד השני.

לצעדים אילו חשיבות הן בפיתוח הצופן כדי להבהיר מה בעצם מנסים להשיג באמצעות האלגוריתם. הן בשימוש בו, כיצד ואיפה להשתמש בו בצורה בטוחה מבלי להיכשל בשימוש לא ראוי או שימוש שלא יועד לו והן במחקר ובדיקת טיב האלגוריתם לעומת אחרים.

הצפנה סימטרית

Postscript-viewer-shaded.png ערך מורחב – צופן סימטרי

הצפנה סימטרית היא הוותיקה ביותר ושורשיה החלו עם ההצפנה הקלאסית לפני מאות שנים. הצפנה סימטרית היא אלגוריתם הצפנה שעושה שימוש באותו מפתח הן להצפנת המידע והן לפענוחו. כלומר בשיטה הסימטרית כדי שניתן יהיה להעביר מידע סודי בין הצדדים המתקשרים, שניהם נדרשים להחזיק באותו מפתח הצפנה. צופן סימטרי יכול להיות מבוסס על שתי הגישות העיקריות להצפנה סימטרית צופן זרם או צופן בלוקים כשלכל אחת מהן יתרונות וחסרונות והן מתאימות לצרכים שונים. באופן כללי יתרונותיה של ההצפנה הסימטרית הם ביעילות החישובית ובכוח המחשוב הנמוך יחסית הדרוש ליישומה לעומת הצפנה אסימטרית. למשל נכון לשנת 2015 תקן ההצפנה המתקדם נחשב לאלגוריתם הסימטרי המועדף הן מהיבט של ביטחון והן מהיבט של יעילות למרות שקיימים אלגוריתמים מהירים מעט יותר. ביישום ממוטב בחומרה תפוקתו היא כמעט 700 MB לשנייה לליבה אחת. התקן מגדיר מפתח הצפנה באורך של 256 סיביות כבטוח לכל צורך מעשי לתקופה הקרובה.

למרות שקיימים אלגוריתמים סימטריים רבים, אלגוריתם DES הוא הדוגמה הקלאסית הטובה ביותר לצופן סימטרי מודרני. DES היה לאלגוריתם הסימטרי הראשון שהופץ בקנה מידה גדול ואף הפך לתקן הצפנה רשמי, שימש בעיקר בתחום הבנקאות והוא עדיין בשימוש מוגבל בגרסה המשולשת. אף על פי שכיום לא נחשב לאלגוריתם בטוח, חשיבותו ההיסטורית נותרה בעינה מאחר שהטכניקות שיושמו בו נלמדות כיום באקדמיה ומשמשות השראה ובסיס לאלגוריתמים סימטריים מודרניים רבים.

אלגוריתמים נוספים הם 3DES, IDEA, FEAL, SAFER, RC5, RC4, Blowfish, ARIA וסרפנט.

להצפנה סימטרית מספר חסרונות:

  • העברה; הצורך בהעברת מפתח ההצפנה לידי מקבל הצופן על מנת שיוכל לפענחו. נגישות למפתח ההצפנה מצד גורם זר במהלך ההעברה או לאחר מכן, אם על ידי ציתות או בדרכים אחרות, תאפשר לו לפענח את כל המסרים שהוצפנו באמצעות אותו מפתח.
  • אחסון; היות שלעתים מטעמי בטיחות נדרש מפתח הצפנה נפרד לכל התקשרות, כמות המפתחות שצריך לשמור עשויה להצטבר באופן משמעותי. שמירה של כמות גדולה של מפתחות הצפנה הופכת למטרד של ממש. יש צורך במקום אחסון בטוח ובתחזוקה תמידית מה שמסבך ומייקר את תהליך ההצפנה.
  • אימות; הצפנה סימטרית בסיסית אינה מספקת ערובה לכך שמפתח ההצפנה או פיסת מידע שייכים למי שמתיימר להיות בעליהם, כלומר אינה מספקת אותנטיקציה של המידע, שלמותו ושייכותו לבעליו באופן קריפטוגרפי.

הצפנה מודרנית מטפלת בבעיות המנויות בכמה אופנים. פתרון מקובל אחד, הוא העברה בטוחה של מפתח הצפנה חד פעמי (המוצפן באמצעים אסימטריים כגון RSA) לידי המקבל יחד עם המידע המוצפן, בכך אין צורך באחסון כלל ובגמר השימוש בו המפתח יכול להיות מושמד. טכניקה נפוצה כיום היא שילוב של שיטות סימטריות עם אסימטריות, תוך ניצול היתרונות שבכל אחת מהן להשגת בטיחות אופטימלית. קיים מגוון גדול של פרוטוקולים קריפטוגרפיים למטרות של העברה בטוחה, אימות והבטחת שלמות של מפתחות הצפנה. חלקם נשענים על שיטות סימטריות בלבד, חלקם נעזרים בסיוע צד-שלישי נאמן (TTP) וחלקם משלבים גם שיטות אסימטריות. בעוד אחרים מספקים גם אימות והוכחת זהות חד כיוונית או דו כיוונית (שרת מול לקוח ולקוח מול שרת). פרוטוקול דיפי-הלמן היה לאלגוריתם הראשון שהתמודד עם בעיית העברת המפתחות בשיטה האסימטרית. פרוטוקול זה מאפשר העברת מפתח הצפנה סימטרי בצורה מאובטחת בתשתית גלויה מבלי שהמשתתפים יאלצו להיפגש כלל. אולם אינו פותר את בעיית האימות. חתימה דיגיטלית בשילוב עם אלמנטים בסיסיים אחרים כגון מחולל אקראי בטוח, פונקציית גיבוב וכדומה, יכולים לספק הגנה כוללת ופתרון מלא לבעיות המנויות.

סודיות מושלמת

Postscript-viewer-shaded.png ערך מורחב – סודיות מושלמת

בשנת 1949 הראה קלוד שאנון אבי תורת האינפורמציה, שיטת הצפנה (סימטרית) "מושלמת" המכונה פנקס חד-פעמי (One time pad). שיטה זו המבוססת על צופן ורנם, בה מצפינים מחרוזת מסר על ידי חיבור XOR של סיביות המסר בזו אחר זו, עם מפתח שנבחר באופן אקראי. אם המפתח אקראי "אמיתי" וחד-פעמי ובאורך המסר המיועד להצפנה, הצופן יהיה בעל סודיות מושלמת (Perfect Secrecy) והוא בטוח ללא סייג. אין שום דרך לשחזרו ללא המפתח (אפילו במקרה שמנחשים מפתח, אין דרך לדעת האם הוא המפתח הנכון). פנקס חד-פעמי מחייב שימוש יחיד במפתח. המפתח חייב להיות ממקור אקראי אמיתי (בניגוד למספרים פסבדו אקראיים המיוצרים על ידי מחשב).

שיטה זו אינה מעשית ביישומים רבים משתי סיבות עיקריות: ראשית, הכנת מפתח אקראי (אמיתי) באורך המסר הופכת קשה כאשר מדובר במסר גדול מאוד. שנית, הצורך בהעברת מפתח ההצפנה הסודי לידי המקבל כרוך בסיכון רב. דרוש לשם כך ערוץ התקשרות בטוח שישמש להעברת המפתח, מה שהופך את השיטה ללא ישימה בסיטואציות רבות, בעיקר כאשר לא היה קשר מוקדם בין הצדדים המתקשרים (דוגמת מסחר ברשת האינטרנט). עם זאת, עדיין קיימים שימושים מעשיים מעטים לשיטה זו. קיימים אלגוריתמים קוונטיים המאפשרים תאורטית להתגבר על מכשול בעיית העברת המפתח, ומספקים בטיחות מוכחת.

הצפנה א-סימטרית

Postscript-viewer-shaded.png ערך מורחב – מפתח ציבורי
ויטפילד דיפי (משמאל) ומרטין הלמן ממציאי הצפנת מפתח ציבורי.

הצפנה סימטרית פועלת עם מפתח הצפנה זהה הן להצפנה והן לפענוח ובדרך כלל נדרש להחליפו מעת לעת. החיסרון העיקרי בשיטות הצפנה סימטריות הוא העובדה שיש לשמור את מפתח ההצפנה בסוד ואין לחשוף אותו בשום שלב לאף אחד מלבד המשתתפים הלגיטימיים, עובדה שיוצרת בעיה מהותית הנקראת בעיית הפצת מפתחות. כל זוג מתקשרים אפשרי צריכים לשתף ביניהם מפתח הצפנה סודי נפרד לצורך התקשרות אחת או מספר מוגבל של התקשרויות ולשם כך הם צריכים למצוא דרך להעבירו מאחד לשני בסודיות ולאחסנו במקום מוגן. בתקשורת מודרנית מספר המפתחות האפשריים שיש לנהל מבחינה פרקטית הופך לנטל כבד ולעתים אינו מעשי. בעיה זו נקראת גם פרדוקס הביצה והתרנגולת כיוון שאם קיימת דרך בטוחה להעביר מפתח הצפנה סודי מלכתחילה הרי שאין צורך בהצפנה כי אפשר להשתמש בה להעברת המסר עצמו, מאידך אם אין דרך כזו כיצד יוכלו להעביר מסרים מוצפנים ביניהם ולפענח אותם אם המתקשרים מעולם לא נפגשו.

במאמר מפורסם משנת 1976 "כיוונים חדשים בהצפנה"[1] הציעו ויטפילד דיפי ומרטין הלמן רעיון פורץ דרך ומהפכני לאותה עת לפתור את הבעיה באמצעות הצפנת מפתח ציבורי או באופן כללי יותר הצפנה אסימטרית. ההצפנה האסימטרית היא שיטת הצפנה שבה המקבל מכין לעצמו שני מפתחות, אחד הנקרא מפתח פרטי שנשמר בסוד ומשמש לפענוח ואילו השני נקרא מפתח ציבורי המפורסם לכל דורש ומיועד להצפנה בלבד. אף על פי שקיים קשר הדוק בין שני המפתחות למתבונן מהצד אמור להיות קשה מאוד לנחש מהו מפתח אחד בהינתן השני ולהפך. בדרך זו כל אחד יכול להצפין מידע עם המפתח הציבורי של המקבל כי הוא ידוע לכל, אך רק המקבל לבדו מסוגל לפענחו עם מפתח הפענוח המתאים שנשמר בסוד. השיטה האסימטרית מתגלה כשימושית במיוחד כאשר צד אחד רוצה להעביר לצד השני מפתח שיחה לצורך הצפנה/פענוח של מידע שהוא מעוניין לחלוק עמו. הוא עושה זאת על ידי על ידי הצפנתו באמצעות המפתח הציבורי של המקבל והמקבל מצידו יכול פענח את המסר ולקבל את מפתח השיחה מבלי שיצטרך לשתף מידע כלשהו מראש עם השולח. עם מפתח זה שני הצדדים יכולים לבצע התקשרות מוצפנת בבטחה, באמצעות צופן סימטרי מהיר. ההיסטוריון דייויד קאהן כינה את הצפנת המפתח הציבורי הקונספט המהפכני ביותר מאז המצאת צופן החלפה פולי-אלפביתי בתקופת הרנסאנס. דיפי והלמן הוכיחו שאפשר לעשות זאת על ידי מה שנקרא מאוחר יותר פרוטוקול דיפי הלמן הנמצא עד היום בשימוש נרחב ובכך מצאו למעשה פתרון יעיל לבעיית הפצת המפתחות. בנוסף העלו השניים לראשונה את רעיון החתימה הדיגיטלית המדמה חתימה קונבנציונלית על מסמך דיגיטלי אם כי לא הציעו פתרון מעשי.

המאמר של דיפי והלמן הצית את הדמיון הציבורי ועורר הדים רבים. הם ציינו במאמרם את העובדה שהרעיון שלהם שאב השראה בין היתר מ רלף מרקל שעבד על רעיון משלו הנקרא חידות מרקל שלא זכה לפרסום. בעקבות פרסום המאמר ולאחר מאמצים רבים מצד האקדמיה התגלו ברבות הימים שיטות מפתח ציבורי רבות. כשנה לאחר מכן ב-1978 פיתחו עדי שמיר, רונלד ריבסט ולאונרד אדלמן את RSA שהיא שיטת מפתח ציבורי שלמה הראשונה אשר יכלה לשמש הן להצפנה והן לחתימה דיגיטלית והיא בשימוש עד ימינו. לאחריה התגלו שיטות נוספות כגון צופן אל-גמאל, הצפנת רבין, הצפנת קריימר-שופ, הצפנת תרמיל, NTRU, הצפנת מקאליס ועוד רבות.

מסמך[2] שפורסם ב-1997 על ידי ממשלת בריטניה חשף כי המודיעין הבריטי (GCHQ) היה מודע כבר ב-1970 לרעיון ההצפנה האסימטרית. המתמטיקאים ג'יימס אליס וקילפורד קוקס שעבדו למען המודיעין הבריטי באותה עת פרסמו כל אחד בנפרד מאמרים בהם טענו שפיתחו שיטות דומות ל-RSA ודיפי-הלמן אך נשמרו בזמנו בסוד מטעמים של ביטחון לאומי.

העובדה שקיים קשר חד-חד ערכי בין המפתח הפרטי למפתח הציבורי של המקבל מאפשרת יישום חתימה דיגיטלית המקשרת באופן חד ערכי בין תוכן מסמך דיגיטלי כלשהו לבין ערך הנקרא חתימה באופן שלא ניתן "להעביר" חתימה ממסמך אחד לאחר. המפתח הפרטי של החותם משמש לחתימה ואילו המפתח הציבורי משמש לאימות החתימה. היות שהמפתח הציבורי ידוע לכל, כל אחד יכול לאמת את החתימה אולם כדי לזייפה במטרה לשכנע אחרים שהחותם הלגיטימי ביצע את החתימה יש צורך לדעת מהו המפתח הפרטי של אותו חותם. דוגמה לאלגוריתם חתימה דיגיטלית שהפך במהרה לתקן רשמי של ממשלת ארצות הברית ומשמש בתפקיד זה עד ימינו הוא DSA.

ביטחון הצפנת מפתח ציבורי מבוסס על הסיבוכיות החישובית של בעיות מתמטיות שונות הנקראות "קשות", חלקן מתורת המספרים וחלקן מתחומים מתמטיים אחרים. בעיות אילו מאפשרות הכנת פונקציה חד-כיוונית שמהווה בסיס להצפנת מפתח ציבורי. למשל הקושי בפתרון בעיית RSA והצפנת רבין מסתמך על ההנחה שקשה מאוד לפרק לגורמים מספרים שלמים גדולים. בעוד שקל לחשב העלאה בחזקה מודולרית, הרי שההפך, חישוב שורש מודולורי קשה מאוד אלא אם כן ידועים הגורמים הראשוניים. זוהי פונקציה חד-כיוונית עם "דלת צונחת" (מידע נוסף המאפשר פתרון הבעיה בזמן יעיל, במקרה זה המידע הנוסף הוא הגורמים הראשוניים). ביטחון פרוטוקול דיפי והלמן מסתמך על הקושי המשוער שבבעיית הלוגריתם הדיסקרטי (גם היא מתורת המספרים). הצפנת NTRU היא דוגמה לאלגוריתם אסימטרי שביטחונו המסתמך על ההנחה שקשה לפתור את בעיית הווקטור הקצר ביותר בתורת הסריגים וכן הצפנת מקאליס היא דוגמה למערכת אסימטרית המבוססת על תורת הקודים.

המכנה המשותף של כל המערכות האסימטריות בימינו לעומת הצפנה סימטרית, הוא היעילות החישובית. מרבית האלגוריתמים נדרשים לבצע חישובים אריתמטיים ארוכים מאוד בשל העובדה שהבעיות המתמטיות האמורות ניתנות לפתרון באמצעות אלגוריתמים המסוגלים לתת פתרון בזמן ריצה תת-מעריכי שזה טוב יותר מכוח גס כלומר ניסוי כל האפשרויות או מחצית מהן במקרה הממוצע עד לגילוי מפתח ההצפנה. כדי לפצות על כך יש צורך להגדיל את מפתחות ההצפנה בהתאם כך שסיבוכיות הניסיון לשבור את ההצפנה עם מיטב האלגוריתמים הידועים תהיה מעבר ליכולת המחשוב הנוכחית. מסיבה זו השימוש בהצפנה אסימטרית בדרך כלל מוגבל לכמות מועטה של מידע והוא משולב במערכת היברדית עם הצפנה סימטרית לניצול מיטבי של היתרונות שבשתי השיטות. בדרך כלל מפתח ציבורי משמש להעברת מפתח הצפנה סודי, כאשר את ההצפנה בפועל מעדיפים לבצע עם אלגוריתם סימטרי מהיר כמו AES.