קרל פרידריך גאוס

Disambig RTL.svg המונח "גאוס" מפנה לכאן. לערך העוסק ביחידת מידה לעוצמת שדה מגנטי, ראו גאוס (יחידת מידה).
קרל פרידריך גאוס
Carl Friedrich Gauss
Carl Friedrich Gauss.jpg
לידה30 באפריל 1777
בראונשווייג עריכת הנתון בוויקינתונים
פטירה23 בפברואר 1855 (בגיל 77)
גטינגן, ממלכת הנובר עריכת הנתון בוויקינתונים
ענף מדעיאסטרונומיה, מתמטיקה, פיזיקה
ארצות מגוריםגרמניה
פרסים והנצחהקיבל מדליית קופלי. הנצחה: גאוס, פרס גאוס ועוד רבים
הערותתלמידים מפורסמים: פרידריך בסל, ריכרד דדקינד, ברנרד רימן

יוהאן קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß, להאזנה (מידע · עזרה), 30 באפריל 1777 - 23 בפברואר 1855) היה מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס תרם רבות בתחומי האלגברה, תורת המספרים, אנליזה מתמטית, סטטיסטיקה, גאומטריה דיפרנציאלית, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד. המגנום אופוס שלו, "מחקרים אריתמטיים" (Disquisitiones Arithmeticae), נחשב ליצירה המכוננת של תורת המספרים המודרנית, ונודעה לה השפעה כבירה על התפתחות הדיסציפלינות המתמטיות הטהורות בשתי המאות שחלפו מאז פרסומה.

גאוס מכונה לעתים קרובות בספרות המתמטית בכינוי "נסיך המתמטיקאים", או "גדול המתמטיקאים מאז ימי קדם", זאת בשל השפעתו יוצאת הדופן בתחומים רבים של מתמטיקה ומדע, והוא זכור כאחד המתמטיקאים החשובים והמשפיעים ביותר בהיסטוריה.

ביוגרפיה

שנים ראשונות

פסל של גאוס בעיר הולדתו, בראונשווייג

גאוס נולד בבראונשווייג שבסקסוניה התחתונה כבן יחיד למשפחת פועלים ענייה. אמו מעולם לא תיעדה את תאריך הלידה שלו, אולם זכרה שהוא נולד ביום רביעי, שמונה ימים לפני חג העלייה, שהוא עצמו מתרחש 39 ימים לפני חג הפסחא. גאוס פתר מאוחר יותר את חידת תאריך לידתו בקונטקסט של מציאת תאריך חג הפסחא, ופיתח שיטות לחשב את מועדי החג בעבר ובעתיד.

גאוס היה ילד פלא. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים לאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, מספר כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו. סיפור מפורסם מבית הספר היסודי מספר כי מורהו של גאוס ביקש להעסיק את תלמידי הכיתה בתרגיל שלפתרונו הייתה דרושה שעה ארוכה. התרגיל היה לחבר את המספרים מ-1 עד 100, והנה לא עברו כמה שניות וגאוס, באותה עת בן 7 בלבד, הניח את לוח-היד שהיה נהוג באותם ימים, קרא "!Lieget se" ("הנה זה מונח", בניב המקומי) ונקב בתוצאה: 5,050. בדיעבד התברר כי הוא גילה את הטור החשבוני בלי להיות מודע לכך: הוא הבחין שסכום האיבר הראשון והאחרון זהה לסכום האיבר השני והלפני האחרון וכן הלאה (1 + 100, 2 + 99, ..., 50 + 51). כלומר כדי למצוא את הפתרון לתרגיל יש להכפיל 101 במספר הזוגות (שהוא מחצית מספר האיברים), וכך מתקבל הפתרון (5,050=101X50).

אביו של גאוס, שהיה חסר השכלה ואב קשוח, רצה כי בנו ימשיך בדרכו ויהיה לבנאי, ולכן התנגד להמשך לימודיו של בנו. אך אמו הכירה בגאונותו של בנה ותמכה בהמשך לימודיו. מורהו, ביטנר, הכיר אף הוא בגאונותו של גאוס והסב אל גאוס את תשומת לבו של הדוכס מבראונשווייג, קרל וילהלם פרדיננד. הדוכס אכן נתן את תמיכתו וחסותו בהמשך לימודיו התיכוניים והאוניברסיטאיים של גאוס.

תחילת דרכו

גאוס קיבל מלגה מהדוכס ובשנים 1792 עד 1795 למד ב-Collegium Carolinum (כיום האוניברסיטה הטכנית בבראונשווייג (Technische Universität Braunschweig)). משם המשיך ללימודים גבוהים באוניברסיטת גטינגן שם למד עד 1798. בעודו באוניברסיטה, גילה גאוס מחדש באופן בלתי תלוי מספר מושגים ומשפטים חשובים: משפט הבינום המוכלל, הממוצע האריתמטי גאומטרי, ומשפט ההדדיות הריבועית. הפריצה שלו התרחשה ב-1796, כאשר הראה באמצעות הרעיון של הרחבת שדות שכל מצולע משוכלל שמספר צלעותיו הוא מספר פרמה (ועקב כך כל מכפלה של מספר פרמה בחזקה של 2) ניתן לבנייה בסרגל ובמחוגה. תגלית זו הייתה ההתקדמות המשמעותית הראשונה בנושא בניות בסרגל ובמחוגה מזה למעלה מ-2000 שנה - בעיות בנייה העסיקו מתמטיקאים עוד מאז ימי המתמטיקאים של יוון העתיקה, והייתה לה חשיבות רבה בהתפתחות האלגברה, הן בזכות הכנסת המישור המרוכב לשימוש, והן בזכות פתיחת שערים לתאוריות מתמטיות עמוקות כמו תורת גלואה. תגלית זו היוותה נקודת מפנה בחייו של גאוס מכיוון שהניעה אותו לבחור במתמטיקה כקריירה ולא בתחום אחר בו התעניין באותה תקופה: הבלשנות - כחובב בלשנות נלהב שלט גאוס בשפות רבות: גרמנית, יוונית, לטינית, צרפתית, אנגלית ודנית. גאוס היה גאה מאוד בתגליתו וביקש שייחרט על מצבתו מצולע משוכלל בן 17 צלעות.

1796 הייתה השנה הפרודוקטיבית ביותר עבור גאוס ותורת המספרים. ב-30 במרץ הוא גילה כי מצולע משוכלל בן 17 צלעות ניתן לבנייה בסרגל ומחוגה. הוא פיתח את האריתמטיקה המודולרית, כלי בעל יכולת הפשטה ניכרת בתיאור מניפולציות בתורת המספרים. ב-8 באפריל הוא היה הראשון שהוכיח את משפט ההדדיות הריבועית. משפט עמוק וכללי זה מאפשר למתמטיקאים לקבוע את הפתירות של כל משוואה ריבועית באריתמטיקה מודולרית. גאוס כינה אותו בשם "משפט הזהב", ועדות לחיבה שרחש לו היא שפרסם שש הוכחות שונות שלו במהלך חייו (שתיים נוספות פרי עטו פורסמו לאחר מותו). משפט המספרים הראשוניים, אשר שוער ב-31 במאי, נותן הבנה טובה כיצד מתפלגים המספרים הראשוניים בין המספרים הטבעיים. ב-10 ביולי גאוס גילה שכל מספר טבעי ניתן להצגה כסכום של 3 מספרים משולשים לכל היותר, והוא תיעד את התגלית בהערה מפורסמת ביומנו: "אאוריקה!, ∆ + ∆ + ∆ = num". ב-1 באוקטובר הוא פרסם תוצאה על מספר הפתרונות של פולינום בעל מקדמים השייכים לשדה סופי, אשר הוליכה ל השערות וייל 150 שנה מאוחר יותר.

שנות הביניים

העמוד הראשי של מחקרים אריתמטיים

בעבודת הדוקטורט שלו משנת 1799 - "הוכחה חדשה לכך שכל פולינום במשתנה אחד ניתן לפרק כמכפלה של גורמים ממשיים מן המעלה הראשונה והשנייה", סיפק גאוס הוכחה מבריקה של המשפט היסודי של האלגברה, משפט חשוב ממנו נובע כי לכל פולינום ממעלה n יש בדיוק n שורשים מרוכבים. עבודת הדוקטורט שלו הכילה ביקורת וסקירה מקיפה של ניסיונות הוכחה קודמים של המשפט, שננקטו על ידי אוילר, לגראנז' וד'אלמבר, והיא הייתה העבודה הראשונה שהצביעה על הפגם הבסיסי בהוכחות קודמות של המשפט. ההוכחה שלו הכילה טיעון מקורי, טופולוגי במהותו, והגישה הכללית בה נקט בהוכחה הייתה מקורית. באופן אירוני, גם ההוכחה של גאוס לא הייתה שלמה והיה בה פער לוגי, בשל שימוש "מובלע" ב משפט העקום של ז'ורדן (Jordan's curve theorem), והיא לא קבילה בסטנדרטים מודרניים. גאוס זיהה את החלל בהוכחתו ובמרוצת חייו סיפק עוד 3 הוכחות שונות של תוצאה זו; שתיים נוספות ב-1816 (האחת אלגברית באופייה והשנייה אנליטית), והאחרונה שבהן ב-1849 והיא נחשבת לדקדקנית ביותר מביניהן לפי הסטנדרטים של היום. מאמציו להוכיח את המשפט היסודי הסירו לחלוטין את הספקות לגבי תקפותם של המספרים המרוכבים.

ב-1801 גאוס פרסם את יצירת המופת הגדולה ביותר שלו: "מחקרים אריתמטיים" (Disquisitiones Arithmeticae) שאת כתיבתה השלים עוד ב-1798, אך החליט לפרסמה רק 3 שנים מאוחר יותר. ביצירה זו גאוס הציג לראשונה כלי חדש לתיאור בעיות בתורת המספרים - אריתמטיקה מודולרית, הוכיח לראשונה את משפט ההדדיות הריבועית, יצר את תורת התבניות הריבועיות, ויצר תאוריה של בנייה בסרגל ומחוגה (שעל פיה הוכיח כי המצולע המשוכלל בן 17 צלעות ניתן לבנייה). הניתוח שגאוס נתן בספרו לתורת התבניות הריבועיות היה מעמיק במיוחד והיה מלא ברעיונות ומושגים חדשים. האופן שבו ניתח גאוס בעיות בספר והקונספציה החדשה היוותה מקור השראה למתמטיקאים במשך דורות אחרי פרסום הספר. כך למשל, ניתוחו של גאוס את בעיית הבנייה בסרגל ומחוגה הכיל חלק מהאלמנטים הרעיוניים של תורת גלואה, והספר הזה היווה מקור השראה לגלואה.

באותה שנה, גילה האסטרונום האיטלקי ג'וזפה פיאצי את האסטרואיד[1] קרס. אולם פיאזי יכול לעקוב אחריו רק למשך מספר חודשים בלבד, וחלק מסלולו בו הצליח לצפות היווה רק 3 מעלות בשמי הלילה. לאחר מכן הוא נעלם באופן זמני מאחורי ההילה של השמש. מספר חודשים מאוחר יותר, כשקרס היה אמור להופיע שוב, פיאזי לא היה מסוגל לאתר מחדש את קרס: הכלים המתמטיים של התקופה לא היו מסוגלים לבצע חיזוי של מיקום האסטרואיד בעזרת מידע כל-כך זעום - 3 מעלות מהווים פחות מ-1% ממסלולו של האסטרואיד.

גאוס, שהיה בן 23 באותו זמן, שמע על הבעיה והחליט לנסות ולחזות את מיקומו של האסטרואיד. לאחר 3 חודשי עבודה מאומצת, הצליח גאוס לחזות את התזמון ואת המקום בו יופיע האסטרואיד שוב - הוא חזה מיקום בו יופיע קרס מחדש בדצמבר 1801. ואכן, בהתאם לתחזית, שנה אחרי הפעם הראשונה בה נראה, הופיע קרס מחדש בזמן זה ומיקומו התאים. התחזית למיקום התבררה כמדויקת בדרגה של חצי-מעלה כאשר האסטרואיד נצפה על ידי הברון פרנץ פון זאך ב-31 בדצמבר 1801 בעיר גותה, ויממה מאוחר יותר על ידי היינריך אולברס בברמן. ההישג הביא לגאוס תהילה והכרה מיידית גדולה והוביל לכך שהוצעה לו משרה כפרופסור לאסטרונומיה וכמנהל מצפה הכוכבים של אוניברסיטת גטינגן. העובדה שהחיזוי היה כה מדויק, חרף מגבלות הכלים המתמטיים של התקופה, זעזעה את הקהילה המדעית באותה תקופה. זאך כתב כי "בלעדי העבודה האינטליגנטית והחישובים של גאוס ייתכן כי לעולם לא היינו מוצאים מחדש את קרס שוב". בשלב זה בחייו עדיין נתמך גאוס במלגה שניתנה לו מטעם הדוכס מבראונשווייג ולא נזקק לעבודה. אולם, עם מותו של הדוכס ב-1807 החליט לקבל את המשרה שהוצעה לו והחזיק בה עד יום מותו.

השיטה של גאוס הייתה כרוכה בקביעת חתך חרוטי במרחב בהינתן ה מוקד שלו (השמש), וחיתוך החרוט עם 3 ישרים נתונים (קווי ראייה מכדור הארץ, שהוא עצמו נע במסלול אליפטי, לקרס) ובהינתן הזמן שלוקח לקרס לעבור את הקשתות המותוות בין הישרים האלו (אשר מהם ניתן לחשב את אורך הקשתות באמצעות החוק השני של קפלר). בעיה זו מובילה למשוואה ממעלה שמינית, אשר פתרון אחד שלה, מסלול כדור הארץ, ידוע. הפתרון שמחפשים מופרד אז מ-6 האחרים בהתבסס על התנאים הפיזיקליים. בעבודה זו גאוס השתמש בשיטות אפרוקסימציה מעמיקות אשר הוא יצר במיוחד לצורך מטרה זו.

שיטה אחת כזו הייתה טרנספורם פוריה מהיר (Fast Fourier Transform). בעוד שיטה זו מיוחסת בדרך כלל למאמר משנת 1965 של המתמטיקאים קולי וטוקי, גאוס פיתח אותה כשיטת אינטרפולציה טריגונומטרית. המאמר שלו, Theoria Interpolationis Methodo Nova Tractata, פורסם רק לאחר מותו בכרך השלישי של אוסף העבודות שלו. עבודה זו אף חוזה את ההצגה הראשונה של ז'וזף פורייה על הנושא בשנת 1807.

התפלגויות נורמליות שונות בסטטיסטיקה

גילוי האסטרואיד קרס על ידי פיאצי הוביל את גאוס לעבודתו המונומנטלית על התאוריה של תנועת אסטרואידים המושפעים מגופים גדולים, אותה פרסם בשנת 1809 בשם "תאוריה של תנועת הגופים השמימיים בחתכי חרוט סביב השמש". בעבודה זו, הוא כה כיסה, איחד, וייעל את המתמטיקה של חיזוי המסלולים של המאה ה-18 עד כי עבודה זאת נחשבת אבן פינה בתולדות האסטרונומיה החישובית. החיבור הציג את קבוע הכבידה הגאוסי, והכיל יישום מעמיק וממצה של שיטת הריבועים הפחותים אותה המציא, שיטה אשר משתמשים בה בכל ענפי המדעים המדויקים כדי להקטין למינימום את ההשפעה של שגיאות מדידה. באמצעות הגדרת ההתפלגות הנורמלית של שגיאות, גאוס הוכיח בחיבורו את שיטתו שלו (ראו גם: סטטיסטיקת גאוס-מרקוב). ההתפלגות הנורמלית, שנחשבת להתפלגות החשובה ביותר בסטטיסטיקה ומיושמת בכל תחומי המדע, נקראת מאז בשם "פעמון גאוס" או "גאוסיאן". שיטה זו תוארה קודם לכן על ידי לז'נדר ב-1805 אך גאוס טען כי הוא השתמש בה כבר ב-1795.

בין השנים 1812 ל-1818, בשנים הראשונות לאחר חזרתו לגטינגן, גאוס חווה פרץ נוסף של רעיונות יצירתיים בתחומים שונים במתמטיקה, ובעקבות זאת הפיק מספר רב של מאמרים בולטים. בין מאמריו הראויים לציון הם מאמרו משנת 1813 בו מצא לחלוטין באופן אנליטי את המשיכה שיוצר אליפסואיד בכל נקודה במרחב, מאמרו "חקירות כלליות חדשות על הטור האינסופי" - פתיחת העידן הריגורוזי של האנליזה המתמטית והדיון הסיסטמטי הראשון על טורים היפרגאומטריים וההצגה של הפונקציה ההיפרגאומטרית (הוא לא פרסם את המשוואה הדיפרנציאלית שמקיימת הפונקציה ההיפרגאומטרית; זו נמצאה בכתב יד לא מפורסם שלו לאחר מותו, יחד עם תכונות מעניינות נוספות של הפונקציה והטרנספורמציות שלה), מאמרו "שיטה חדשה לחישוב ערכי אינטגרלים על ידי קירוב" - חיבור על שיטה חדשה לאינטגרציה נומרית, מאמרו "קביעת הדיוק של תצפיות" - דיון ב אמדים סטטיסטיים, ולסיום מאמרו היוצא מגדר הרגיל באסטרונומיה תאורטית משנת 1818 בו הוכיח שהפרטורבציה המסלולית הנגרמת על ידי גוף מסיבי לגוף קטן שקולה לפרטורבציה אשר הייתה נגרמת על ידי טבעת מסה אליפטית שצפיפותה בכל נקודה פרופורציונלית למסת הכוכב ויחסית הפוך למהירותו באותה נקודה[2] (עבודתו על הפרטורבציות של פאלאס הובילה אותו למשפט יוצא דופן זה). במקביל עסק גאוס בשורה של בעיות סבוכות בפיזיקה מתמטית: במכניקה, באקוסטיקה ועוד.

ב-1818 החליט גאוס לנצל את יכולותיו החישוביות לשימוש מעשי והוביל סקר גאודזי של ממלכת הנובר, וקישר לסקרים דניים מקבילים. כדי לקדם את הסקר המציא גאוס את ה הליוטרופ, מכשיר העושה שימוש במראה כדי להחזיר אור שמש על פני מרחקים גדולים במטרה לסמן ולמדוד מרחקים של עמדות. מחקריו בגאודזיה העמידו יסודות חדשים למדע הגיאודזיה, ותרמו לנושאים רבים: יישומים מתמטיים כגון התאוריה המתמטית של קווים גאודטיים על משטח עקום, תיאור הצורה של כדור הארץ (בין היתר טבע את המונח "גאואיד") והסבר לאי רגולציות שלה, הכנת מפות מדויקות יותר של אזורים שונים, שיטות אינטרפולציה טריגונומטרית ועוד.

הסקר של הנובר עורר בגאוס עניין בגאומטריה דיפרנציאלית, תחום במתמטיקה הדן במשטחים ועקומות. בין השאר, גאוס יצר את המושג של עקמומיות גאוס של משטחים, שהיא המושג המרכזי שגאוס הכניס לתחום. ב-1827, גאוס גילה וניסח משפט מתמטי חשוב ביותר בתחום זה (Theorema Egregium), המקשר בין הרעיון של עקמומיות משטח לגאומטריה של הצורות המתקיימות עליו, כלומר לזוויות ולמרחקים הנמדדים על פני המשטח ולהבדל בין תוצאות המדידות על פני המשטח לבין אלו הנקבעות בגאומטריה אוקלידית, והמשפט ביסס את החשיבות היסודית שיש לעקמומיות גאוס בגאומטריה דיפרנציאלית. הוא פרסם משפט זה ואת מכלול התאוריה שלו על משטחים עקומים בחיבורו מאותה שנה "חקירות כלליות על משטחים עקומים", שהינו יצירתו המרכזית בתחום זה. גאוס ניסח והוכיח גם את המשפט הידוע כמשפט גאוס-בונה, המקשר בין הגאומטריה של משטח לטופולוגיה, משפט בעל חשיבות בהנחת יסודות הטופולוגיה.

קרל פרידריך גאוס, 1828

ב-1820 החל מתמטיקאי הונגרי בשם יאנוש בויאי, בנו של פרקש בויאי שהיה חבר טוב של גאוס, ליצור את התאוריה שלו לגבי גאומטריה לא אוקלידית ופרסם תוצאות לגביה ב-1832. מאוחר יותר טען גאוס שהוא הגיע בעצמו לתוצאות שפרסם בויאי, ואלו היו תוצאות אליהן הגיע בעצמו לפניו אבל לא פרסמן מעולם; הוא כתב לפרקש בויאי: "לשבח עבודה זו יהיה זה למעשה לשבח את עצמי. שכן כל תכולת העבודה... מתלכד כמעט במדויק עם ההרהורים המתמטיים שלי עצמי אשר העסיקו אותי במהלך שלושים או שלושים וחמש השנים האחרונות". הוא אכן הגיע לתוצאות אלה, כפי שניתן ללמוד ממכתבו ל טאורינוס בשנת 1824, אך סירב לפרסמן מחשש לזעם ההמונים ("מוג לב במקצת" כינה אותו בשל כך מדען המחשב אדסחר דייקסטרה[3]).

שנותיו האחרונות

אחרי 1828 החל להסתמן כיוון חדש בעבודתו של גאוס, והוא החל לחקור בעיקר בעיות בפיזיקה תאורטית. הפירות הראשונים שהניב מחקר זה היו מאמרו על מכניקה משנת 1829: "על ניסוח יסודי חדש של המכניקה", בו ניסח מחדש את המכניקה הקלאסית באמצעות עקרון חדש בחשבון וריאציות (Gauss's principle of least constraint), ומאמרו משנת 1830 על קפילריות: "עקרונות כלליים של תאוריית הצורה של נוזלים בשיווי משקל", בו דן בנוזלים במצב שיווי משקל ופתר את הבעיות המרכזיות בתחום. בתקופה זו החל גם להתעניין בקריסטלוגרפיה, והגיע למספר תוצאות חשובות; הוא הציע מערכת סימון קריסטלוגרפית שהייתה למעשה שקולה למערכת אינדקס מילר[4]. בהשראת מחקרו הקריסטלוגרפי, גאוס פתר את בעיית "אריזת הכדורים האופטימלית" - הוכחת השערת קפלר - במקרה של מארז סריגי (lattice) רגולרי (אי-האפשרות של אריזות לא רגולריות צפופות יותר לא הוכחה עד 1998).

ב-1831 החל גאוס בשיתוף פעולה עם הפיזיקאי וילהלם ובר. שיתוף פעולה זה היה פורה ביותר והוביל לידע חדש בתאוריה של חשמל ומגנטיות, כגון ייצוג של יחידה מגנטית במונחים של מסה, אורך וזמן, וכן גילוי חוקי קירכהוף. ובר וגאוס הגיעו לתגליות רבות בנוגע לחשמל סטטי, תרמי, וזה הנובע מחיכוך, אך לא פרסמו, בעיקר משום שמחקרם התמקד במגנטיות ארצית. גאוס עצמו ניסח את חוק גאוס באלקטרוסטטיקה (שמהווה מקרה פרטי של משפט גאוס באנליזה וקטורית), אחד החוקים הבסיסיים והחשובים ביותר בתחום זה, כמו גם את חוק גאוס במגנטיות. ב-1833, תכננו גאוס וובר את הטלגרף האלקטרומגנטי הראשון, באורך 3 קילומטר, שקישר בין מצפה הכוכבים אל מכון הפיזיקה בתוך אוניברסיטת גטינגן. גאוס וובר עמדו מיד על חשיבות המצאתם להתפתחות התעשייתית בעולם, וובר התנבא כי "הטלגרף יעשה לעולם את מה שמערכת העצבים עשתה לגוף האנושי". המעבדה של גאוס וובר הייתה אחראית על פיתוח מספר אמצעי מדידה בתחום האלקטרומגנטיות, ובין היתר הם המציאו את המגנטומטר הראשון. באמצעות המגנטומטר שהמציא מדד גאוס ב-1835 לראשונה את עוצמת השדה המגנטי של כדור הארץ. כמו כן פיקח גאוס על בנייתו של מתקן מגנטי במצפה הכוכבים, ויחד עם ובר ייסד את magnetischer Verein ("המועדון המגנטי") אשר תמך במדידות של השדה המגנטי של כדור הארץ באזורים שונים, והניב את ה-"אטלס המגנטי" הראשון של כדור הארץ. כחלק מניסוי זה פיתח גאוס שיטה למדידת העוצמה האופקית של שדה מגנטי, שיטה אשר נעשה בה שימוש רב במחצית השנייה של המאה ה-20 והיוותה למעשה את התאוריה המתמטית להפרדה בין המקור הפנימי (הגלעין והקרום) והחיצוני (מגנטוספירה) של השדה המגנטי של כדור הארץ. באחד ממאמריו על התאוריה המגנטית שלו, מאמר שתואר כ"אחד המאמרים החשובים של המאה", יישם גאוס את התאוריה המתמטית שלו והמידע הניסויי הרב שצבר על השדה המגנטי של כדור הארץ, וכך פילסה את עצמה תגלית עולמית כאשר גאוס יכול היה לנבא ואף, לראשונה בהיסטוריה, להצביע על המיקום המדויק של הקטבים המגנטיים של כדור הארץ, נושא שריתק ימאים מאז ימי קדם. מספר שנים קודם לכן, ב-1831, מגלה הארצות הבריטי ג'יימס קלארק רוס איתר לראשונה באופן מקורב את הקוטב המגנטי הצפוני. תוצאות חישוביו של גאוס הצביעו על אותו אזור גאוגרפי, וסטו כ-3 מעלות ו-30 דקות קשת מהמיקום האמיתי, מה שהוכיח את אמינות התאוריה.

גאוס על שטר של עשרה מארק גרמני

ב-1840 פרסם גאוס את חיבורו המשפיע Dioptrische Untersuchungen, שבו תיאר את האנליזה השיטתית הראשונה של היווצרות דמויות תחת הקירוב הפרקסיאלי ( אופטיקה גאוסיאנית). בין התוצאות הרבות בחיבור, הוכיח גאוס כי מערכת אופטית ניתנת לאפיון באמצעות 6 הנקודות הקרדינליות שלה, גזר את נוסחת העדשות הגאוסיאנית, טיפל לראשונה באופן מתמטי ב עדשות עבות, והראה שההדמיה של מערכות אופטיות סימטריות מסוימות ניתנת לביטוי כפיתוח לטור שבו האיבר הראשון מספק את ההתנהגות הסטיגמטית האידאלית והאיברים מסדרים גבוהים יותר מתארים את האברציות. גאוס פעל גם במישור הפרקטי של האופטיקה, חקר את הבעיה של בניית אופטיקה עם עיוותים מינימליים, ושיפר את התכנון של טלסקופים ומכשירים אופטיים אחרים. ה-Dioptrische היה בעל השפעה רבה על תלמידיו של גאוס שפנו לתחום האופטיקה, כמו ארנסט אבה ואחרים, והתוצאה של ההשפעה הזו הייתה זריקת מרץ להתפתחות התעשייה האופטית בגרמניה. בסיסי ככל שהוא נראה היום, חיבור זה עסק בנושאים רבים שלא הובנו היטב לפני פרסומו, לפחות לא באופן מתמטי מדויק, ומסיבה זו בדיוק היסטוריונים אחדים כינו לפעמים את החיבור "עבודתו המדעית החשובה ביותר".

אחרי 1840 פעילותו המדעית של גאוס הלכה והצטמצמה בהדרגה. הוא עסק בבעיות מתמטיות בעלות חשיבות משתנה; מספר פאזלים קומבינטוריים (ביניהם חידת שמונה המלכות), בעיות מתמטיות מרכזיות מסוימות ועוד. הוא המשיך לעסוק בבעיות בפיזיקה תאורטית ובפיזיקה ניסויית. הוא עדיין נותר פעיל מאוד באסטרונומיה תצפיתית; הוא המשיך לעשות תצפיות וחישובים אסטרונומיים, וכן נותר פעיל במחקרו על מגנטיות כדור הארץ. מחקריו המתמטיים והפיזיקליים עסקו בהתכנסות של טורים, מתמטיקה אקטוארית, בעיות מכניות הקשורות בסיבוב כדור הארץ (בהמשך למחקריהם של לגראנז', פלאנה, הנסן ו קלאוזן), בשיפורים למטוטלת פוקו ועוד. בתקופה זו גאוס נפל לתחביב של לאסוף עיתונים וכל סוג שהוא של חדשות פיננסיות. הוא נודע כמשקיע חכם במיוחד, וממשלות רבות ברחבי אירופה הציעו לו להיות שר אוצר. הספקולציות הפיננסיות שלו עזרו לו להשיג הכנסה שנתית הגבוהה פי 200 מהמשכורת השנתית שלו. ב-1851, הוא ביסס בפעם האחרונה אוסף חדש של עקרונות מדעיים, הפעם במתמטיקה אקטוארית - בנוגע לתאוריות המתמטיות של ביטוחים וקרנות פנסיה.

ב-1854 גאוס בחר את הנושא להרצאה הכעת מפורסמת של תלמידו ברנהרד רימן - "על ההיפותזה העומדת ביסודות הגאומטריה". בדרך חזרה הביתה מהרצאתו של רימן, ובר דיווח שגאוס היה מלא בשבחים והתרגשות.

גאוס נפטר בשנת 1855 (כחודשיים לפני יום הולדתו ה-78), בגטינגן, שם אף נקבר. מוחו של גאוס לא נקבר עמו אלא נמסר למחקר מדעי; נמצא כי משקלו 1,492 גרם ושטחו הצֶרֶבְּרָלִי 219,588 סמ"ר. נמצאה גם רמת פיתולים גבוהה במיוחד, ממצא אשר בתחילת המאה ה-20 הוצע כהסבר לגאונות שלו.

לאחר מותו של גאוס נמצא בביתו יומן, שלימים הפך לאחד המסמכים החשובים בהיסטוריה של המתמטיקה. ביומן זה, אותו ניהל בין השנים 1796 ו-1814, רשם גאוס את תגליותיו בצורה מדויקת כשהוא מקפיד לרשום את תאריך הגילוי וההוכחה של כל אחת מהן. רובן נותרו לא מפורסמות. נמצא כי היומן מכיל 146 תוצאות, אשר חלק מהן התגלו והוכחו על ידי מתמטיקאים אחרים שנים רבות לאחר מכן, כמו למשל "המשפט היסודי של פונקציות של משתנה מרוכב" - משפט אינטגרל קושי, שנוסח בידי גאוס בטרם התגלה על ידי קושי ונקרא על שמו, וכן גילוי הקווטרניונים בטרם גילה אותם ויליאם רואן המילטון. יתרה מכך, בנכלאס שלו נמצאו תוצאות חלוציות מוקדמות רבות בטופולוגיה ותורת הקשרים (ככל הנראה גאוס הוא שסיפק את הגירוי הראשוני לתלמידיו רימן, מביוס, וליסטינג לעסוק בטופולוגיה).