תורת הקבוצות

Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

תורת הקבוצות היא תורה מתמטית בסיסית העוסקת במושג הקבוצה, שהיא אוסף מופשט של איברים שונים זה מזה. התורה מאפשרת טיפול מתמטי מדויק במושגי יסוד במתמטיקה כגון יחס, פונקציה, מספר ואינסוף. תורת הקבוצות האקסיומטית, המנוסחת בשפה של הלוגיקה המתמטית, מספקת תשתית לכל תחומי המתמטיקה. כשלעצמה, תורת הקבוצות עוסקת בעיקר בתכונות של מונים וסודרים.

את תורת הקבוצות החל לפתח גאורג קנטור ב-1870, בעקבות קשיים שהתעוררו בתורת הפונקציות הממשיות. קנטור חקר קבוצות של נקודות אי-רציפות, ואחר-כך קבוצות כלליות יותר. את מחקריו סיכם בשני מאמרים שפורסמו ב-1895 וב-1897 תחת הכותרת "תרומה ליסודות התאוריה של מספרים טרנספיניטים" (במקור - בגרמנית), בכתב-העת Mathematische Annalen.

בתחילת המאה ה-20 התגלו בתורת הקבוצות פרדוקסים, שנבעו מהיותה מתירנית מדי וחסרת ביסוס אקסיומטי נאות. לשם פתרון בעיות אלה פותחה תורת הקבוצות האקסיומטית, ובעקבות צעד זה ההתייחסות לתורת הקבוצות ללא הביסוס האקסיומטי הקפדני נקראת תורת הקבוצות הנאיבית. תורת הקבוצות הנאיבית עודנה נלמדת כקורס בסיסי באוניברסיטאות, שכן היא פשוטה יותר להבנה והתוצאות שלה נכונות גם בגרסה האקסיומטית.

הגדרת הקבוצה ויחסים בין קבוצות

מנקודת מבט לוגית, נתבונן בעצם כלשהו (אם זהו מספר, סימול מופשט כלשהו, או קבוצה אחרת), ונשאל את השאלה: "האם העצם הזה הוא איבר בקבוצה A?". כלומר, על כל עצם x כלשהו נוכל להגיד אך ורק אחת משתי האפשרויות הבאות:

  • העצם x איבר בקבוצה A
  • העצם x אינו איבר בקבוצה A

את השייכות מסמנים כך: , כלומר x איבר של הקבוצה A. איבר אינו יכול להופיע פעמיים בקבוצה: או שהוא שייך לה, או שאינו שייך. אם x אינו איבר של A, מסמנים .

נתבונן עתה בקבוצה A כלשהי, ועליה נשאל, "האם בקבוצה A יש איברים?"

  • אם אין בה איברים, זוהי הקבוצה הריקה ונסמן אותה: .
  • אם קיימים בה איברים, אז היא אינה קבוצה ריקה לכן .

את הקבוצה A שבה קיימים שלושת האיברים a, b ,c נסמן:

יחסים בין קבוצות

אומרים ש-A מוכלת ב-B או חלקית ל-B (ומסמנים ) אם כל איבר של A הוא איבר של B. יחס חשוב זה מגדיר את השוויון בין קבוצות: קבוצות הן שוות אם יש להן אותם איברים, כלומר אם ורק אם וגם . זו תכונה מהותית של קבוצות, הממחישה שאין להן מבנה או תכונות מעבר לרשימת האיברים שהן מכילות. שילוב היחסים מאפשר להגדיר חלקיות ממש: A חלקית ממש לקבוצה B אם ורק אם היא חלקית לה, אך אינה שווה לה; במקרה זה כותבים או . בעוד שיחס ההכלה הוא יחס סדר חלש, חלקיות אמיתית היא יחס סדר חזק.